Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Xiang, Ye-Gao Yin* and Xiao-Chun Huang

Department of Chemistry, Shantou University, Shantou, Guangdong 515063, People's
Republic of China
Correspondence e-mail: ygyin@stu.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.104$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Diammine(pyridine-2,6-dicarboxylato)copper(II)

In the crystal structure of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3}-\right.\right.$ $\left.\mathrm{NO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{2}$], the Cu atom is coordinated in a squarepyramidal geometry by a pyridine-2,6-dicarboxylate ligand acting in an N, O, O^{\prime}-tridentate chelating mode, and by two N atoms from two ammine ligands. A further long $\mathrm{Cu}-\mathrm{O}$ bond involving a symmetry-realated molecule generates chains of molecules in the a-axis direction.

Comment

The multifunctional ligand $\mathrm{H}_{2} \mathrm{PDC}$ (pyridine-2,6-dicarboxylic acid) is of particular interest for obtaining metal organic frameworks because of its potential coordinating sites, from a carboxylic acid group, which when deprotonated results in a divalent anion, and a neutral aromatic nitrogen coordinating site (Eubank et al., 2005). In the molecule of the title compound, the central $\mathrm{Cu}^{\mathrm{II}}$ atom is chelated by a PDC^{2-} ligand and two ammine ligands, giving a square pyramidal coordination geometry (Fig. 1). In addition, as shown in Fig. 2, a weak interaction between $\mathrm{Cu}^{\mathrm{II}}$ and an O atom from a symmetry-related molecule (Table 1) connects molecules into one-dimensional chains in the a-axis direction. In the crystal structure, intermolecular hydrogen bonds connect the onedimensional molecular chains into a two-dimensional framework perpendicular to the b axis (Table 2 and Fig. 3).

Experimental

Following the procedure described by Constable et al., (1990), $\mathrm{H}_{2} \mathrm{PDC}(0.083 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added with 1 ml of concentrated ammonia to an aqueous solution (15 ml) of copper(II) oxalate ($0.075 \mathrm{~g}, 0.5 \mathrm{mmol}$). The mixture was placed in a 25 ml Teflon-lined Parr bomb and heated at 433 K for 38 h . The bomb was then cooled to room temperature at $5 \mathrm{~K} \mathrm{~h}^{-1}$. Crystals were obtained in about 30% yield. Analysis calculated for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cu}: \mathrm{C} 32.00, \mathrm{H} 3.45, \mathrm{~N}$ 15.99%; found: C $31.98, \mathrm{H} 3.50, \mathrm{~N} 16.02 \%$. IR ($\mathrm{KBr}^{2} \mathrm{~cm}^{-1}$): 3378 (m), 3065 (w), 1605 ($v s$), 1565 (m), 1556 (m), 1482 (s), 1417 (s).

Received 27 October 2005 Accepted 14 November 2005 Online 3 December 2005

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]$
$M_{r}=262.72$
Triclinic, $P \overline{1}$
$a=4.8654$ (6) \AA
$b=9.1161$ (11) A
$c=10.0916$ (12) \AA
$\alpha=76.927$ (2) ${ }^{\circ}$
$\beta=86.987(2)^{\circ}$
$\gamma=86.618(2)^{\circ}$
$V=434.88(9) \AA^{3}$

$Z=2$

$D_{x}=2.006 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 58 reflections
$\theta=2.2-26.0^{\circ}$
$\mu=2.51 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, blue
$0.26 \times 0.18 \times 0.11 \mathrm{~mm}$

Data collection

Bruker APEX area-dectector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.558, T_{\text {max }}=0.755$
2693 measured reflections

Refinement

Refinement on F^{2}
1901 independent reflections
1772 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=27.8^{\circ}$
$h=-6 \rightarrow 5$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 13$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.104$
$S=1.08$
1901 reflections
138 parameters
H -atom parameters constrained

$$
\begin{gathered}
\begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0653 P)^{2}\right. \\
\quad+0.365 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.83 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.81 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.911(2)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$2.049(2)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.962(3)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.319(2)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.021(2)$	$\mathrm{O} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.925(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$169.27(11)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$160.08(9)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$80.68(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$100.57(9)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 2$	$104.03(10)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$89.13(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$79.60(9)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$	$90.40(9)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 3$	$94.95(10)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$95.96(9)$

Symmetry code: (i) $x-1, y, z$.

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.89	1.95	2.765 (3)	152
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 4^{\text {ii }}$	0.89	1.91	2.739 (3)	155
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{N} 3^{\text {i }}$	0.89	2.55	3.148 (4)	126
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {iii }}$	0.89	2.41	3.204 (4)	149
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{O} 1^{\text {iv }}$	0.89	2.18	3.007 (3)	154
Symmetry codes: $-x,-y,-z .$	$\begin{equation*} -1, y \tag{iv} \end{equation*}$	$-x+1,-y,-z+1 ; \quad \text { (iii) } \quad x+1, y, z$		

H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }} \mathrm{C}$ and $\left.\mathrm{N}-\mathrm{H}=0.89 \AA ; U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }} \mathrm{N}\right)$, and were included in the refinement in a riding-model approximation.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figure 1
View of (I), showing 30% displacement ellipsoids and H atoms drawn as spheres of arbitrary radii.

Figure 2
Section of a one-dimensional chain of molecules of (I) connected by weak $\mathrm{Cu}-\mathrm{O}$ bonds (shown as green dashed lines). The atoms labeled with suffixes a and b are related by the symmetry operators $-1+x, y, z$ and $-2+x, y, z$ respectively.

Figure 3

View of the hydrogen bonding in (I), shown as dashed lines. Thick green lines indicate the long $\mathrm{Cu}-\mathrm{O}$ bonds.

The authors thank the Research Foundation of the Education Department of Guangdong Province (No Z03034) and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Constable, E. C., Lewis, J., Liptrot, M. C. \& Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.
Eubank, J. F., Walsh, R. D. \& Eddaoudi, M. (2005). Chem. Commun. pp. 20952097.

Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

